Civil, Environmental & Architectural Engineering

C. M. EGGLESTON, HEAD; M. TAO, ASSOCIATE HEAD

PROFESSORS: C. M. Eggleston, T. El-Korchi, N. Rahbar, H. W. Walker

ASSOCIATE PROFESSORS: L. D. Albano, J. A. Bergendahl, J. D. Dudle

P. P. Mathisen, A. R. Sakulich, M. Tao, S. Van Dessel

ASSISTANT PROFESSORS: S. Liu, N. Ma 

ASSOCIATE PROFESSORS OF TEACHING: D. Rosbach

ASSISTANT PROFESSORS OF TEACHING: L. Abu-Lail, S. Farzin

ASSISTANT TEACHING PROFESSORS: J. A. Rosewitz

SENIOR INSTRUCTORS: S. LePage

EMERITUS PROFESSORS: R. Fitzgerald, J. C. O’Shaughnessy, R. Pietroforte. G. Salazar

ASSOCIATED FACULTY: T. Camesano (CHE), S. Kmiotek (CHE)

Mission Statement

The Department of Civil, Environmental, & Architectural Engineering (CEAE) at WPI empowers students to become global stewards of the planet and work toward a better, sustainable tomorrow. CEAE’s flexible, project-based curriculum lets students explore multiple disciplines, emphasizing civic responsibility and leadership.

Working with our world-class faculty and using WPI’s state-of-the-art facilities, our students conduct research with global implications in areas like structural design, construction, infrastructure, health monitoring, sustainability, water resources, and pollution prevention and remediation. This important work moves outside our walls to Global Project Centers as students address real-world civil engineering problems, such as maintaining sustainable infrastructure and protecting the earth’s resources.

The CEAE Department offers B.S. degrees in Civil Engineering, Environmental Engineering, and Architectural Engineering, as well as a Minor in Architectural Engineering.  

Majors

Minors

Classes

AREN 2002: Architectural Design I

Category
Category I (offered at least 1x per Year)
Units 1/3

This course offers an introduction to the architectural design process by exploring the relations between materials, structures, spaces, and architectural composition. Studio: The studio design component explores the syntax of architecture, siting, context, and human scale. Students will engage these topics through architectural design studies for a project of limited scope and programmatic complexity. Hand drawing and sketching, modeling and visualization software, orthographic drawings, and physical models are used to explore, develop, and communicate architectural design concepts. Lectures / lab: The lecture/lab component of the course focuses on two-dimensional drawing techniques (including hand drawings and sketching), drawing conventions, and architectural representation techniques. Students are introduced to the fundamental uses of modeling software in engineering and architectural design practice. Advanced topics may include three dimensional modeling rendering, animation, and parametric design. This course uses studio, lecture, and lab based teaching methods

AREN 2004: Architectural Design II - Light and Lighting Systems

Category
Category I (offered at least 1x per Year)
Units 1/3

This course aims to develop an understanding of the role of light and lighting in the perception of architecture and human well-being. Studio: The studio component of the course will explore the interactions between light, materials, spaces, and people. Students will engage these topics through architectural design studies for a project with well- specified lighting and architectural needs. Modeling, visualization and simulation software, orthographic drawings, and physical models are used to explore and analyze architectural design concepts. Lectures: The lecture components of the course focuses on the design of illumination systems in buildings. A general introduction to the visual environment is provided, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Other topics include photometric units, light sources, daylight luminaries, lighting quality, light loss factors, average luminance calculations (lumen method), point-by-point calculations, performance impacts, and ethics. Field measurements and computer simulations are used to explore some major aspects of architectural illumination systems. Design problems are solved by considering economic evaluation, energy saving criteria and applicable standards and building codes. Students will be introduced to the use of computer tools for the design, analysis, and visualization of natural and artificial lighting in buildings. This course uses studio and lecture based teaching methods Students may not receive credit for both AREN 2004 and AREN 3003

AREN 2023: Introduction to Architectural Engineering Systems

Category
Category I (offered at least 1x per Year)
Units 1/3

The objective of this course is to introduce the functional parts and systems that make up a building as well as their interactions in delivering required sustainable performance. It encompasses foundations, structures, building enclosures, heating and air conditioning, electrical, plumbing and fire safety systems as well as concepts of building performance and aspects of pertinent building codes and standards. This course, in addition, incorporates basic principles of building science and green construction.

AREN 2025: Building Electrical Systems

Category
Category I (offered at least 1x per Year)
Units 1/3

The principles of electrical system design in buildings are introduced in this course. Starting with an overview of electrical fundamentals and related laws, it covers circuit design, power distribution and service equipment, communication systems and special electrical systems that meet the requirements of the national electric code as well as building occupants. Other topics include single-phase and three-phase circuits, electrical and lighting loads, panel-board design, switching, system sizing, grounding, fault calculations, and over-current protection. The design criteria and calculation procedures for developing simple layouts of building electrical systems are illustrated. Work includes study of applicable NFPA 70 (NEC) and related building codes.

AREN 3002: Architectural Design III

Category
Category I (offered at least 1x per Year)
Units 1/3

This course aims to further a student’s knowledge of the architectural design process through study of ideas, principles and methods of design and construction. Studio: Architectural concepts are developed with the completion of a project of expanded scope and complexity. The course emphasizes the development of form, space, spatial relationships, materials, context, program, and architectural presentation techniques. Hand drawing and sketching, modeling and visualization software, orthographic drawings, detail drawings, and physical models are used to explore, develop, and communicate architectural design concepts. Lectures: The lecture/lab component of the course focuses on three-dimensional modeling and architectural representation techniques. Students are introduced to advanced modeling software in engineering and architectural design practice. Topics include three dimensional modeling, rendering, animation, and parametric design. This course uses studio, lecture, and lab based teaching methods

AREN 3003: Principles of HVAC Design for Buildings

Category
Category I (offered at least 1x per Year)
Units 1/3

The course introduces principles and applications of mechanical systems that are required for environmental comfort, health, and safety of building occupants with a focus on energy efficiency and conservation. Topics include psychometrics, thermal comfort, building heating and cooling loads, fluid flow basics, HVAC components and systems, building envelop heat transfer, and energy requirements. In the course, students develop the ability to design and conduct computational modelling experiments and to analyze and interpret output data for selection between system alternatives in order to optimize energy use. Some sections of this course may be offered as Writing Intensive (WI)

AREN 3005: Lighting Systems

Category
Category I (offered at least 1x per Year)
Units 1/3

This course focuses on the design of illumination systems in buildings. It provides a general introduction to the visual environment, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Other topics include photometric units, light sources, daylight luminaries, lighting quality, light loss factors, average luminance calculations (lumen method), point-by-point calculations, performance impacts, and ethics. Field measurements and computer simulations are used to explore some major aspects of architectural illumination systems. Design problems are solved by considering economic evaluation, energy saving criteria and applicable standards and building codes. 

AREN 3006: Advanced HVAC System Design

Category
Category I (offered at least 1x per Year)
Units 1/3

Analysis of heating and cooling load requirements, considering building construction type, geometry, infiltration, occupancy effects, and daily load variations. Heating design addresses water heating systems, electrical heating, central heating, heating of low and high-rise buildings, selection of heaters, boilers, pumps, piping design. Cooling design addresses refrigerants, refrigeration cycle, evaporator, compressor, condenser, thermostatic expansion valves, refrigeration system control equipment, motor and motor control equipment, refrigeration accessories, calculation of refrigeration piping and absorption systems. Computer applications for heating and cooling load analysis will be introduced to develop energy saving solutions. Analytical techniques and building codes are discussed through case studies and design projects.

AREN 3020: Architectural Design IV - Building Energy Simulation

Category
Category I (offered at least 1x per Year)
Units 1/3

This course aims to develop an understanding of sustainability in architecture and introduces the fundamentals and applications of energy simulation tools. Studio: The studio component of the course will explore the relationships between people, buildings, and the environment. Students will explore the impact of building site and context, orientation, building massing and envelop configuration, occupancy and other factors. Students will engage these topics through architectural design studies and simulations for a project of increased scope and programmatic complexity. Modeling and visualization software, simulation tools, orthographic drawings, and physical models are used to explore and develop architectural design concepts. Lectures: The lecture components of the course focuses on the principles of building energy simulation, with a focus on the practical applications of building energy simulation tools to building design. Topics being covered include various model input parameters such as building geometry, orientation, climate, comfort, zoning, material properties, operation schedules, and HVAC systems. Building energy simulation software is illustrated and applied to the analysis of case studies and/or design projects. Simulation output results are critically analyzed and compared to the results obtained from other building energy calculation methods. This course uses studio and lecture based teaching methods Students may not receive credit for both AREN 3020 and AREN 3023

AREN 3022: Architectural Design V - Building Envelope Design

Category
Category I (offered at least 1x per Year)
Units 1/3

This course aims to develop an understanding of the architectural design development process with special focus on the design and detailing of building envelopes. Studio: Through an iterative process, students will advance the architectural and technical development of an architectural project of increased complexity. Modeling and simulation software, orthographic drawings, detail drawings, and physical models are used to advance the development of architectural design concepts. Lectures: The lecture component of the course covers the basic principles of building envelope design, focusing primarily on functional performance requirements and practical constructability aspects. Various building envelope systems are reviewed, including facade and roofing systems made of masonry, stone, concrete, timber, glass, and various metals. More elaborate building envelope strategies will also be reviewed; such as double skin facades and passive solar design approaches. Students will be introduced to computer tools and other methods for the analysis of heat and moisture transfer within building envelopes and components thereof. This course uses studio and lecture based teaching methods Students may not receive credit for both AREN 3022 and AREN 3026

AREN 3024: Building Physics

Category
Category I (offered at least 1x per Year)
Units 1/3

The course introduces the principles of building physics, as they are applied to various building design situations and performance requirements. Covered topics include heat transfer, moisture control, condensation, cold bridging, external and internal gains, and air flows, as they pertain to building envelopes (external walls, windows and doors, and roofs) and the requirements of environmental comfort of space occupants. Design exercises take into account pertinent building and energy codes as well as comfort standards. The course gives students the tools to integrate engineering science fundamentals and physics principles in developing building design solutions. Thermal measurements in building components are performed.

AREN 3025: Building Energy Simulation

Category
Category I (offered at least 1x per Year)
Units 1/3

The course addresses the basic principles of building energy simulation, with a focus on the practical applications of building energy simulation tools to building design. Topics being covered include various model input parameters such as building geometry, orientation, climate, comfort, zoning, material properties, operation schedules, and HVAC systems. Building energy simulation software packages are illustrated and applied to the analysis of various case studies of buildings. Simulation output results are critically analyzed and compared to the results obtained from other building energy calculation methods.

CE 1030: Civil Engineering and Computer Fundamentals

Category
Category I (offered at least 1x per Year)
Units 1/3

This course introduces students to basic fundamentals of civil engineering, group dynamics, oral presentation skills, engineering report writing techniques, and uses of the computer. Basics of structural engineering, geotechnical engineering, environmental engineering, surveying, materials, and construction engineering and management are presented in this course through a collaborative group teaching approach. Background is provided to gain competence in operating systems, editors, and spreadsheets. Student groups complete weekly computer laboratory projects and develop oral presentations and written reports.

CE 2000: Analytical Mechanics I

Category
Category I (offered at least 1x per Year)
Units 1/3

This fundamental civil engineering course provides an introduction to the analysis of structures in static equilibrium. The focus of this course is a classical analysis of concurrent and non-concurrent equilibrium. A variety of engineering problems including trusses, machines, beams, rigid frames, and hydraulic structures involving concentrated and distributed loading systems are analyzed for external reactions and internal forces.

CE 2001: Analytical Mechanics II

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an introduction to the relationship between analysis, design, and the behavior of materials under load. Theory and applications are developed that utilize simple and combined stress-strain behavior of members subjected to axial, torsional, and flexural loadings, with applications to beams, trusses, rigid frames, shafts, and tension and compression structures.

CE 2002: Introduction to Analysis and Design

Category
Category I (offered at least 1x per Year)
Units 1/3

This course develops an understanding of classical and modern structural analysis. Topics include loading systems, and the analysis of statically determinate and statically indeterminate beams, frames, trusses, structural floor systems for buildings, bridges, and other structural assemblies.

Suggested

CE 1030.

CE 2020: Surveying

Category
Category I (offered at least 1x per Year)
Units 1/3

This course develops fundamental skills in the theoretical and practical aspects of plane surveying through the use and care of modern instruments and the associated computations. Topics include the classification of errors incurred in observed field data and necessary correction applications, the use and care of surveying equipment, traversing, differential leveling, stadia and mapping, and electronic data transfer. Computer applications are used where appropriate.

CE 3006: Design of Steel Structures

Category
Category I (offered at least 1x per Year)
Units 1/3

This course covers the theory and practice of structural steel design. The structural design process for beams, columns, trusses, frames, and connections is based on Load and Resistance Factor Design (LRFD) specifications of the American Institute of Steel Construction.

Suggested

CE 1030.

CE 3008: Design of Reinforced Concrete Structures

Category
Category I (offered at least 1x per Year)
Units 1/3

This course covers the theory and practice of reinforced concrete design. The structural design process for beams, columns, slabs, frames, flat slabs, footings, and retaining walls uses the ultimate strength design codes of the American Concrete Institute.

Suggested

CE 1030.

CE 3010: Structural Engineering

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an understanding of the practice of structural engineering. It builds upon the fundamental skills developed in CE 2000, CE 2001, and CE 2002 to present the principles of structures and their elements. The course provides a perspective for dealing with the issues of strength, stiffness, and stability. Although wood is the principle material used to develop the study of the interrelationship between analysis and design of structural systems, structural steel and reinforced concrete systems are also discussed. It also introduces students to the use of building codes for design criteria. The role of the structural engineer in the design process and cost factors are also discussed.

Suggested

CE 1030.

CE 3020: Project Management

Category
Category I (offered at least 1x per Year)
Units 1/3

This course presents the fundamental concepts and process of project management applied to public and private works. The principle focus of the course is the management of civil engineering projects including planning, scheduling, organization and control, as well as management concepts of leadership, motivation, trust, project team development, division of work, and conflict resolution. Ancillary engineering and construction practices involving financial practices, construction documents, contract negotiation and administration, quality and safety control, insurance and bonding are covered.

CE 3022: Legal Aspects of Professional Practice

Category
Category I (offered at least 1x per Year)
Units 1/3

The course focuses on the legal underpinnings that regulate the design and execution of construction projects and the relations between their participants. The subject is presented according to the various phases of a construction project, from inception to handover. The overall objective is to develop an awareness of the legal aspects that regulate the exercise of the architectural and civil engineering profession and of the environmental constraints of construction. Topics such as permitting process, design/engineering services and ethical issues are included. Some sections of this course may be offered as Writing Intensive (WI)

CE 3025: Project Evaluation

Category
Category I (offered at least 1x per Year)
Units 1/3

In this course students are provided with a systematic framework for evaluating the economic sustainability and financial aspects of a building investment through its life cycle: project definition, design, construction and operation. The course develops according to several interrelated topics: budgeting (square foot cost and parametric estimating) and economic feasibility analysis, financing mechanisms, cash flow analysis, (time-value -of -money factors, present worth and rate of return), life-cycle assessment (environmental impact analysis), taxes, depreciation and regulations as well as consideration of risks and uncertainties. 

CE 3026: Materials of Construction

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an understanding of the use and acquisition of engineering properties of construction materials. Topics include relationships between the structure of materials, their engineering properties, and the selection of suitable materials for applications involving strength, durability, and serviceability Experimental laboratory procedures including design of experiments, data collection, analysis, and representation, and report writing are an integral part of the work. Some sections of this course may be offered as Writing Intensive (WI).

CE 3030: Fundamentals of Civil Engineering Autocad

Category
Category I (offered at least 1x per Year)
Units 1/3

This course introduces Civil Engineering students to fundamental uses of the AutoCAD software package. Basic two dimensional drawing techniques are covered. Advanced topics that may be covered include three dimensional drawing, rendering and animation. Students are required to become familiar with AutoCAD.

CE 3031: Building Information Modeling: Software Tools and Principles

Category
Category I (offered at least 1x per Year)
Units 1/3

This course introduces students to fundamental software applications for design and construction planning throughout the different phases of the development of civil engineering projects in a collaborative fashion as established by the principles of Building Information Modeling. The course covers the principles of basic 3D software environments, object creation and manipulation, assemblies of objects, surface and terrain modeling, building modeling, geographic and building information databases. Emphasis is given to the adaptability of this software to changes in design and to the production of graphic design documentation. Application software such as AutoCAD Civil 3D, Autodesk Revit and Navisworks are used in this course.

CE 3041: Soil Mechanics

Category
Category I (offered at least 1x per Year)
Units 1/3

This is an introductory course dealing with the science and technology of earth materials with an emphasis on fundamental concepts of particulate mechanics. The topics which are discussed include fluid flow through porous media, deformation and shear characteristics of soil, consolidation, lateral earth pressure, and slope stability.

Suggested

GE 2341.

CE 3044: Foundation Engineering

Category
Category I (offered at least 1x per Year)
Units 1/3

Foundation engineering is a study of the applications of the principles of soil mechanics and structural theory to the analysis, design and construction of foundations for engineering works with the emphasis on the soil engineering aspects of soil structure interaction. Subsurface exploration techniques, design of rigid and flexible retaining structures, and design of, shallow and deep foundations are considered. Although the course deals mainly with aspects of the design of buildings and bridges, certain parts of the course (design of temporary trench bracing, for example) are very relevant to construction engineering.

Suggested

CE 3008.

CE 3050: Traffic Engineering

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an introduction to the field of transportation engineering with particular emphasis on traffic engineering. Principles, such as traffic studies, highway safety, traffic flow, intersection design and control, capacity analysis, and level of service analysis are included. In addition, basic highway design parameters associated with curves and sight distance are covered. Regional transportation systems and sustainable development are also discussed and analyzed; and concepts associated with parking, public transportation, and travel demand modeling are introduced.

CE 3051: Pavement Engineering

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an introduction to concepts required for design construction and management of pavements. Topics include Highway Drainage, Soil Engineering for Highway Design, Bituminous Materials, Design of Flexible and Rigid Pavements and Pavement Management. Knowledge of the subject matter in CE 3050 is helpful but not required.

CE 3059: Environmental Engineering

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an introduction to engineering aspects of environmental quality control. Students will learn fundamental science and engineering principles needed for environmental engineering, including concepts in chemistry, biology, physics, mass conservation, kinetics and reactor design. These principles are then applied to environmental engineering problems, including modeling of pollutants in natural systems and design of unit processes in engineered systems. Topics covered include environmental regulations, surface and ground water quality, drinking water treatment, wastewater treatment, air pollution, and hazardous waste management.

CE 3060: Water Treatment

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides in-depth coverage of processes used in water treatment. Topics include: review of water chemistry and drinking water standards, impurities in natural waters, aeration, water softening coagulation, flocculation, sedimentation, filtration, disinfection, taste and odor control, corrosion control, and iron and manganese removal.

CE 3061: Sustainable Wastewater Engineering: Treatment and Reuse

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides an in-depth study of the theory and practice of sustainable wastewater management practices, including treatment operations and reuse opportunities. The course will incorporate resource recovery concepts involving water, nutrients, and energy. Topics include: sources of wastewater, wastewater characteristics, emerging contaminants, biosolids operations, wastewater reuse approaches, and physical, chemical, and biological processes for wastewater treatment and reuse.

CE 3062: Hydraulics

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides a background for applying the principles of fluid mechanics to analyze and design hydraulic and fluid flow systems for projects related to water resources and civil and environmental engineering. Topics include hydraulics in pipes and closed systems, open channels and rivers, water supply systems and water distribution networks, pump systems and turbines, wastewater collection and treatment systems, and coastal and other natural environmental systems. Course content includes water quality and energy considerations, as well as the development and application of hydraulic models.

CE 3070: Urban and Environmental Planning

Category
Category I (offered at least 1x per Year)
Units 1/3

This course introduces to the student the social, economic, political, and environmental factors that affect the complex relationship between the built and natural environment. By using the principles of sustainable development and the procedures of planning, the optimal development pattern may be examined, and the infrastructure (roads, water supply systems, waste-water treatment systems, shopping malls, etc.) necessary to support present and future growth patterns may be determined. The information necessary in planning, which involves conscious procedures of analysis, formulation of alternative solutions, rational assessment and deliberate choice in accordance with evaluation criteria, is obtained through extensive reading. As such, the course introduces a variety of topics of concern to engineers and environmental scientists. The course is intended not only for civil engineering majors, but also for students preparing for an IQP in areas of urban or environmental concerns. Some sections of this course may be offered as Writing Intensive (WI).

CE 3074: Environmental Analysis

Category
Category I (offered at least 1x per Year)
Units 1/3

This course provides a background in the principles and techniques of assessing areas of natural environment and applying environmental assessments to evaluate the inherent suitability of these areas for sustainable urban and resource-based uses. Topic areas include basic concepts in sustainability, landscape characterization and analysis, and environmental impact assessment and planning. The concepts and techniques developed in this course are useful for land use planning, site design, natural resources management, and the determination of the impact of engineering projects on the environment.

Suggested

CE 3059 or CE 3070.

CE 4007: Matrix Analysis of Structures

Category
Category II (offered at least every other Year)
Units 1/3

This course presents the principles of matrix analysis of structural elements and systems; fundamentals of matrix algebra, solution of simultaneous equations, matrix inversion; analysis of plane trusses, method of joints; displacement method, principle of virtual work, analysis of continuous beams, analysis of plane frames, plane trusses, analysis of building frames and bridges; computer aided structural analysis and principles of software development. 

CE 4060: Environmental Engineering Laboratory

Category
Category I (offered at least 1x per Year)
Units 1/3

In this course, students learn how to perform analytical methods and conduct laboratory experiments relevant to natural and engineered treatment systems in environmental engineering. Topics in water, wastewater, air, and environmental health are included. The course focuses on data acquisition, analysis, and interpretation as well as technical report writing.

CE 4061: Hydrology

Category
Category II (offered at least every other Year)
Units 1/3

This course introduces the concepts and principles governing the distribution and transport of water in the environment, and also provides a background for quantifying hydrologic processes as required for the development of water resources projects. Topics include the hydrologic cycle, precipitation, evaporation and transpiration, infiltration, runoff analysis, streamflow, hydrologic routing, statistics and probability in hydrology, and the quantification of hydrologic processes for water quality protection. The course introduces field techniques and the use of hydrologic models for solving problems in water resources and hydrology. 

CE 4063/CHE 4063: Transport & Transformations in the Environment

Category
Category II (offered at least every other Year)
Units 1/3

In this course, students will learn to make quantitative relationships between human activities and the effects on water, soil, and air in the environment. Students will learn the scientific and engineering principles that are needed to understand how contaminants enter and move in the environment, how compounds react in the environment, how to predict their concentrations in the environment, and how to develop solutions to environmental problems. Topics to be covered may include water quality engineering (including microbial interactions), air quality engineering, and hazardous waste management. This course will be offered in 2022-23, and in alternating years thereafter.

CE 4071: Land Use Development and Controls

Category
Category I (offered at least 1x per Year)
Units 1/3

The purpose of this course is to provide an understanding of the regulatory framework under which land is developed and the built environment is designed. The quality of our environment depends upon the development which is permitted to take place and the controls which direct that development. Through this course, the student will learn the principles, methods, and techniques which a planner or engineer may use to plan and design the highest and best uses and development of land. In particular, the use and limits of zoning, special permits, subdivision control, and other tools with which a developer or planner should be familiar will be examined in detail. Some sections of this course may be offered as Writing Intensive (WI).

CE 4600: Hazardous and Industrial Waste Management

Category
Category II (offered at least every other Year)
Units 1/3

This course will cover concepts and techniques for handling hazardous and industrial wastes. Regulations governing hazardous waste, water & soil remediation concepts, and the fundamentals of waste treatment processes will be discussed. Instruction will be provided through lectures, fieldtrips, practitioner seminars, and class problem solving sessions. This course will be offered in 2021-22, and in alternating years thereafter.

CE 4610: Solid Waste Engineering

Category
Category II (offered at least every other Year)
Units 1/3

This course will provide an overview of municipal solid waste (MSW) engineering with specific attention to municipal solid waste quantities and characteristics, refuse collection systems, landfilling, recycling and material processing, pollution prevention, biological processing, and energy recovery.
Students may not receive credit for both CE 461X and CE 4610.

ENV 3500: Women and the Environment

Category
Category II (offered at least every other Year)
Units 1/3

This course examines the perceived, existing, and potential links between women and the environment with an emphasis on the roles of women in environmental movements, climate change, climate justice, forest conservation, water management, disaster recovery, womenperceptions of environmental risk, and other environmental issues. Through reading, discussion, documentary films and research project, we will explore how social, economic, political and cultural systems that shape women’s environmental experiences and their resistance and strategies for social change.