Bioinformatics and Computational Biology Program
Majors
-
Bioinformatics and Computational Biology Major, Bachelor of Science
Minors
Classes
BB 1003/BCB 1003: Exploring Bioinformatics and Computational Biology
Life scientists are generating huge amounts of data on many different scales, from DNA and protein sequence, to information on biological systems such as protein interaction networks, brain circuitry, and ecosystems. Analyzing these kinds of data requires quantitative knowledge and approaches using computer science and mathematics. In this project-based course, students will use case studies to learn about both important biological problems and the computational tools and algorithms used to study them. Students will study a sampling of topics in the field; recent topics included complex disease genetics, HIV evolution, antibiotic resistance, and animal migration behavior. In addition, students will hear from several guest speakers about their interdisciplinary research. Computational tools explored will include both freely-available tools to analyze sequences and build phylogenetic trees (e.g. BLAST, MUSCLE, MEGA) as well as guided programming using languages such as Python, R, and Netlogo. Students may not receive credit for both BCB / BB 100X and BCB / BB 1003. BBT majors may count this course as fulfilling part of their quantitative science and engineering requirement, but not as part of their BB 1000 level course requirement.
High school biology. Programming experience is not required.
BB 3010/BCB 3010: Simulation in Biology
Computer simulations are becoming increasingly important in understanding and predicting the behavior of a wide variety of biological systems, ranging from metastasis of cancer cells, to spread of disease in an epidemic, to management of natural resources such as fisheries and forests. In this course, students will learn to use a technique called ‘agent-based modeling (ABM)’ to simulate biological systems. Most of the classroom time will be spent working individually or in groups, first learning a language (either the block-based language Starlogo Nova, or the text-based language Netlogo), and then creating simulation projects. We will also discuss several papers on biological simulations from the primary scientific literature. In constructing and comparing their simulations, students will demonstrate for themselves how relatively simple behavioral rules followed by individual molecules, cells, or organisms can result in complex system behaviors.
This course will be offered in academic years ending in even numbers.
Students taking this course should have background in a biological area they would like to simulate, at about the depth provided by a BB 2000 or 3000 level class. No programming experience is assumed.
BB 4001/BCB 4001: Bioinformatics
In an age when the amount of new biological data generated each year is exploding, it has become essential to use bioinformatics tools to explore biological questions. This class will provide an understanding of how we organize, catalog, analyze, and compare biological data across whole genomes, covering a broad selection of important databases and techniques. Students will acquire a working knowledge of bioinformatics applications through hands-on use of software to ask and answer biological questions in such areas as genetic sequence and protein structure comparisons, phylogenetic tree analysis, and gene expression and biological pathway analysis. In addition, the course will provide students with an introduction to some of the theory underlying the software (for example, how alignments are made and scored).
This course will be offered in academic years ending in odd numbers.
BCB 4004/MA 4603: Statistical Methods in Genetics and Bioinformatics
This course provides students with knowledge and understanding of the applications of statistics in modern genetics and bioinformatics. The course generally covers population genetics, genetic epidemiology, and statistical models in bioinformatics. Specific topics include meiosis modeling, stochastic models for recombination, linkage and association studies (parametric vs. nonparametric models, family-based vs. population-based models) for mapping genes of qualitative and quantitative traits, gene expression data analysis, DNA and protein sequence analysis, and molecular evolution. Statistical approaches include log-likelihood ratio tests, score tests, generalized linear models, EM algorithm, Markov chain Monte Carlo, hidden Markov model, and classification and regression trees.
This course will be offered in academic years ending in even numbers.