MA 4222: Top Algorithms in Applied Mathematics

Category
Category II (offered at least every other Year)
Units 1/3

This course will introduce students to the top algorithms in applied mathematics. These algorithms have tremendous impact on the development and practice of modern science and engineering. Class discussions will focus on introducing students to the mathematical theory behind the algorithms as well as their applications. In particular, the course will address issues of computational efficiency, implementation, and error analysis. Algorithms to be considered may include the Krylov Subspace Methods, Fast Multipole Method, Monte Carlo Methods, Fast Fourier Transform, Kalman Filters and Singular Value Decomposition. Students will be expected to apply these algorithms to real-world problems; e.g., image processing and audio compression (Fast Fourier Transform), recommendation systems (Singular Value Decomposition), electromagnetics or fluid dynamics (Fast Multipole Method, Krylov Subspace Methods, and Fast Fourier Transform), and the tracking and prediction of an object’s position (Kalman Filters). In addition to studying these algorithms, students will learn about high performance computing and will have access to a machine with parallel and GPU capabilities to run code for applications with large data sets. This course will be offered in 2021-22, and in alternating years thereafter.