This course focuses on model- and data-driven approaches in Data Science. It covers methods from applied statistics (regression), optimization, and machine learning to analyze and make predictions and inferences from real-world data sets. Topics introduced in this course include basic statistics (regression), analytics (explanatory and predictive), basics of machine learning (classification and clustering), eigen values and singular matrices, data exploration, data cleaning, data visualization, and business intelligence. Students will utilize various techniques and tools to explore and understand real-world data sets from various domains.